The binary expansion and the intermediate value theorem in constructive reverse mathematics
نویسندگان
چکیده
We introduce the notion of a convex tree. We show that the binary expansion for real numbers in the unit interval (BE) is equivalent to weak König lemma (WKL) for trees having at most two nodes at each level, and we prove that the intermediate value theorem (IVT) is equivalent to WKL for convex trees, in the framework of constructive reverse mathematics.
منابع مشابه
On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملThe fuzzy generalized Taylor’s expansion with application in fractional differential equations
In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzyfractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessarythat we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractionaldifferential equations in the sense of Caputo...
متن کاملSOME FUNDAMENTAL RESULTS ON FUZZY CALCULUS
In this paper, we study fuzzy calculus in two main branches differential and integral. Some rules for finding limit and $gH$-derivative of $gH$-difference, constant multiple of two fuzzy-valued functions are obtained and we also present fuzzy chain rule for calculating $gH$-derivative of a composite function. Two techniques namely, Leibniz's rule and integration by parts are introduced for ...
متن کاملConstructive reverse investigations into differential equations
We study Picard’s Theorem and Peano’s Theorem from a constructive reverse perspective. This means that we have to change our focus from global properties to local properties. We also extend the theory of pointwise continuously differentiable functions to include Rolle’s Theorem, the Mean Value Theorem, and the full Fundamental Theorem of Calculus. 2000 Mathematics Subject Classification 03F60, ...
متن کاملConstructive Equivalents of the Uniform Continuity Theorem
For the purpose of constructive reverse mathematics, we show the equivalence of the uniform continuity theorem to a series of propositions; this illuminates the relationship between Brouwer’s fan theorem and the uniform continuity theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015